77 research outputs found

    Spontaneous decay of excited atomic states near a carbon nanotube

    Full text link
    Spontaneous decay process of an excited atom placed inside or outside (near the surface) a carbon nanotube is analyzed. Calculations have been performed for various achiral nanotubes. The effect of the nanotube surface has been demonstrated to dramatically increase the atomic spontaneous decay rate -- by 6 to 7 orders of magnitude compared with that of the same atom in vacuum. Such an increase is associated with the nonradiative decay via surface excitations in the nanotube.Comment: 8 pages, 3 figure

    Quantum tight-binding chains with dissipative coupling

    Get PDF
    We present a one-dimensional tight-binding chain of two-level systems coupled only through common dissipative Markovian reservoirs. This quantum chain can demonstrate anomalous thermodynamic behavior contradicting Fourier law. Population dynamics of individual systems of the chain is polynomial with the order determined by the initial state of the chain. The chain can simulate classically hard problems, such as multi-dimensional random walks

    Thermal Radiation From Carbon Nanotube in Terahertz Range

    Full text link
    The thermal radiation from an isolated finite-length carbon nanotube (CNT) is theoretically investigated both in near- and far-field zones. The formation of the discrete spectrum in metallic CNTs in the terahertz range is demonstrated due to the reflection of strongly slowed-down surface-plasmon modes from CNT ends. The effect does not appear in semiconductor CNTs. The concept of CNT as a thermal nanoantenna is proposed.Comment: 5 pages, 3 figure

    Microscopic theory of quantum dot interactions with quantum light: local field effect

    Full text link
    A theory of both linear and nonlinear electromagnetic response of a single QD exposed to quantum light, accounting the depolarization induced local--field has been developed. Based on the microscopic Hamiltonian accounting for the electron--hole exchange interaction, an effective two--body Hamiltonian has been derived and expressed in terms of the incident electric field, with a separate term describing the QD depolarization. The quantum equations of motion have been formulated and solved with the Hamiltonian for various types of the QD excitation, such as Fock qubit, coherent fields, vacuum state of electromagnetic field and light with arbitrary photonic state distribution. For a QD exposed to coherent light, we predict the appearance of two oscillatory regimes in the Rabi effect separated by the bifurcation. In the first regime, the standard collapse--revivals phenomenon do not reveal itself and the QD population inversion is found to be negative, while in the second one, the collapse--revivals picture is found to be strongly distorted as compared with that predicted by the standard Jaynes-Cummings model. %The model developed can easily be extended to %%electromagnetic excitation. For the case of QD interaction with arbitrary quantum light state in the linear regime, it has been shown that the local field induce a fine structure of the absorbtion spectrum. Instead of a single line with frequency corresponding to which the exciton transition frequency, a duplet is appeared with one component shifted by the amount of the local field coupling parameter. It has been demonstrated the strong light--mater coupling regime arises in the weak-field limit. A physical interpretation of the predicted effects has been proposed.Comment: 14 pages, 7 figure
    • …
    corecore